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Abstract

Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life
molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine
early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as
multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA
methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially
methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were
identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in
neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation
studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while
the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ∼28 kb block of
hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor
whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated
DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart
disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for
epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic
dysregulation resulting from trisomy 21.
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Introduction
Down syndrome (DS) is caused by trisomy 21 and is the most
common chromosomal aneuploidy present in live births, where
it affects approximately 1 in 691 (1). DS is also the most com-
mon genetic cause of intellectual disability and is characterized
by distinct facial features and immune system abnormalities.
Congenital heart defects (CHD) occur in approximately half of DS
patients. Furthermore, DS displays a distinct cancer risk profile,
which includes an increased risk for childhood leukemia and a
decreased risk for solid tumors (2,3). While the genetic basis of
DS is well understood, molecular profiling of DS offers insight
into the variability in secondary clinical phenotypes, particularly
how epigenetic variation can result from a primary genetic
change and reflect variable clinical features.

At the molecular level, DS is characterized by differences
in gene expression and epigenetic modifications not only on
chromosome 21 but also across the entire genome (4). Global or
region-specific DNA CpG hypermethylation has been observed
in a number of DS studies and is most pronounced in the brain
and placenta (5–8). A meta-analysis of DS DNA methylation array
studies uncovered a pan- and multi-tissue CpG methylation
signature of DS, where 24 out of the 25 differential genes were
hypermethylated in at least 3 of the following tissues: adult
brain, fetal brain, placenta, buccal epithelial, and adult blood
(4). While global hypermethylation (∼1% difference) has been
observed in DS adult and fetal brain tissue and sorted cells using
arrays, the same study demonstrated that sorted T-lymphocytes
(CD3+) from adult DS peripheral blood showed the opposite; a
trend for global hypomethylation (∼0.3% difference, P = 0.186) in
DS compared to control (9). The sorted DS T-lymphocytes (CD3+)
showed an approximately equal ratio of hypermethylated and
hypomethylated CpGs when compared to controls. Furthermore,
the top transcription factor binding site identified within the DS
hypomethylated CpGs for the sorted T-lymphocytes (CD3+) was
the RUNX1 motif (4,9). More recently, a separate DS study assayed
whole-blood from neonates using array technologies (10). In this
study, differentially methylated regions (DMRs) distinguishing
DS from healthy controls showed a slight but significant bias for
hypomethylation, although hypermethylation was observed at
RUNX1 (<1 kb in size). RUNX1 is a developmental transcription
factor located on chromosome 21 that is associated with acute
myeloid leukemia and classically known to regulate the devel-
opment of blood cells (hematopoiesis), however, it also regulates
neurodevelopment (11,12).

While reduced representation methods, such as arrays, have
provided invaluable insight into the DS methylome, they only
assay less than 1 million out of the ∼30 million CpG sites present
in the human genome. Previously, in order to assay a larger
proportion of the DS methylome, we performed the first whole
genome bisulfite sequencing (WGBS) analysis of human DS sam-
ples, specifically postmortem brain (7). Our low-pass sequencing
analysis of post-mortem brains identified 3152 DMRs, where 75%
were hypermethylated and involved in neurodevelopment and
metabolism. The hypermethylated DMRs showed a cross-tissue
signal, where we replicated many DS pan- and multi-tissue
genes and expanded them to larger DMRs, while the hypomethy-
lated DMRs showed a more tissue-specific profile. In this study,
we present, to our knowledge, the first WGBS of neonatal dried
blood spots (NDBS). We assayed more than 24 million CpGs from
the NDBS of 86 children of both sexes with either DS, idiopathic
developmental delay (DD), or typical development (TD) enrolled
in the Childhood Autism Risks from Genetics and Environment
(CHARGE) study (13). Our analyses demonstrate that the DS

newborn blood methylome is distinguishable from that of both
TD and DD. We also characterized the profiles of hyper- and
hypo-methylated DMRs, which diverge by tissue specificity and
suggest a key role for RUNX1 in shaping early life epigenetic
alterations in DS.

Results
Low-pass WGBS of NDBS DNA detects both trisomy 21
and a trend of global hypomethylation

DNA was isolated from 21 DS (13 Male, 8 Female), 33 DD (16
Male, 17 Female), and 32 (16 Male and 16 Female) TD archived
NDBS. WGBS sequencing libraries prepared from 10 ng of DNA
per sample were indexed and pooled for sequencing across a
single NovaSeq 6000 S4 flow cell (4 lanes) to obtain ∼5× coverage
(Supplementary Material, Table S1). By comparing read depth
across each chromosome, a novel copy number variation (CNV)
calling algorithm was utilized to confirm trisomy 21 in the DS
samples (Fig. 1A) and to rule out the possibility of other large
CNVs on chromosome 21 in the DD and TD samples. Smoothed
methylomes from the 24 456 995 CpGs assayed in all groups were
first used to detect possible differences in global methylation
levels. The DS group showed the lowest global CpG methylation
levels (82.1%), followed by DD (82.5%) and TD (82.7%) (Fig. 1B).
When compared to the DD and TD groups, there was a trend
(PDiagnosis = 0.1, two-way ANOVA) for a slight (∼0.5%) decrease in
global CpG methylation levels in DS samples.

Genes associated with DMRs specific to DS reflect
differences in neurodevelopment, metabolism and
transcriptional regulation

In order to identify DMRs that distinguished DS from TD and DD,
three comparisons with adjustments for sex were performed.
The DS versus TD comparison identified 3249 genome-wide sig-
nificant (q < 0.05) DMRs (47% hypermethylated, 53% hypomethy-
lated) from 22 608 background regions that were assembled from
the 24 659 362 CpGs covered in these groups (Supplementary
Material, Table S2A). On average, the DS versus TD DMRs were
740 bp long and contained 18 CpGs. The DS versus DD com-
parison identified 2784 genome-wide significant (q < 0.05) DMRs
(48% hypermethylated, 52% hypomethylated) from 20 540 back-
ground regions that were assembled from the 24 770 743 CpGs
covered in these groups (Supplementary Material, Table S2B). On
average, the DS versus DD DMRs were 733 bp long and contained
18 CpGs. In contrast to the other comparisons, the DD versus TD
comparison only identified 59 nominally significant (p < 0.05)
DMRs (54% hypermethylated, 46% hypomethylated) from 1861
background regions that were assembled from the 25 122 420
CpGs covered in these groups (Supplementary Material, Table
S2C). On average, the DD versus TD DMRs were 498 bp long and
contained 24 CpGs. Hierarchal clustering analysis also showed
that while DS DMRs clearly distinguished DS from either DD
or TD groups, they did not distinguish DD from TD (Fig. 1C).
DMRs from all comparisons were distributed throughout the
genome with no evident preference for a particular chromosome
(Supplementary Material, Fig. S1).

Given that the adjustment for sex removed sex-specific
effects, we also performed sex-stratified analyses for each of
the three main comparisons. The majority of DS DMRs from
the sex-stratified analyses overlapped with the sex-adjusted
analyses and there were fewer DMRs overall in the sex-stratified
analyses (Supplementary Material, Fig. S2). This finding suggests
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Figure 1. Distinct DS methylome profiles. (A) Line plot of normalized copy number based on read depth over 5 kb bins for chromosome 21 in all 86 samples. (B)

Density plot of average percent smoothed methylation for CpGs covered in the 3 diagnostic groups. (C) Heatmaps of significant (q < 0.05) DMRs from the DS versus TD

comparison, significant (q < 0.05) DMRs from the DS versus DD comparison, and significant (p < 0.05) DMRs from the DD versus TD comparison. All heatmaps display

hierarchal clustering of Z-scores, which are the number of standard deviations from the mean of non-adjusted percent smoothed individual methylation values for

each DMR.

that the adjustment for sex provided increased power to detect
differences by enabling larger sample sizes and that there are
relatively few sex-specific differences in DS associated NDBS
methylation changes. In contrast, DD versus TD sex-stratified
analyses detected a larger number of DMRs than the sex-
adjusted analysis, which suggests a more sex-specific profile in
idiopathic neurodevelopmental disorders when compared to DS.

Next, we examined the functional relevance of the DS DMRs.
First, we tested for enrichments within known CpG and gene
region annotations. For the CpG annotations, the hypermethy-
lated DS DMRs were significantly (q < 0.05) enriched within
CpG islands and shores and the hypomethylated DS DMRs were
enriched within the open sea (Supplementary Material, Fig. S3A).
Genic annotation testing revealed that the hypermethylated DS
DMRs were significantly (q < 0.05) enriched within promoters,
exons, and 3′ untranslated regions (UTRs) and the hypermethy-
lated DS versus TD DMRs were also enriched within 5′ UTRs
(Supplementary Material, Fig. S3B). The hypomethylated DS ver-
sus TD DMRs were significantly (q < 0.05) enriched within exons
and introns, while the hypomethylated DS versus DD DMRs were
enriched within 3′ UTRs.

DMRs from all comparisons were mapped to genes, where the
top significantly (p < 0.05, dispensability ≤0.25) enriched Gene
Ontology (GO) terms were identified (Fig. 2). Some neurodevel-
opmental GO terms were enriched in all comparisons (behavior,
juxtaparanode region of axon, and GABA-ergic synapse); how-
ever, GO terms unique to DS DMRs included some neurode-
velopmental terms (autonomic nervous system development
and semaphorin receptor complex/activity) as well as terms
related to metabolism (choline metabolic process, hemoglobin
metabolic process, pyridoxal phosphate binding, and transam-
inase activity) and transcriptional regulation (nucleosome and
DNA-binding transcription factor activity). The GO terms were
relatively similar when split by hyper- and hypo-methylation
(Supplementary Material, Fig. S4).

Consensus DMRs and machine learning predictors
distinguish DS from DD and TD NDBS samples

In order to determine if DS DMRs that accurately distinguish DS
from idiopathic DD as well as TD samples could be identified,
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Figure 2. GO enrichments. Bar plot of the least dispensable slimmed significant (p < 0.05, dispensability ≤0.25) GO enrichments for DS versus TD comparison with

corresponding values from the DS versus DD and DD versus TD comparison. NAs in the DD versus TD comparison were replaced with 0.

we used two approaches. First, we examined the overlap of
DMRs identified in each of the three comparisons (Fig. 3A and
Supplementary Material, Fig. S5A). Merging the overlaps into
single regions that spanned all combined DMRs produced a
consensus DMR profile of 4205 DMRs whose smoothed methy-
lation distinguished DS from DD and TD by the first princi-
ple component (Fig. 3B and Supplementary Material, Fig. S5B).
Second, machine learning feature selection was performed on
the consensus DMRs and identified a minimal set of 22 DMRs
that distinguished DS from DD and TD (Fig. 3C). Notably, only
one of the DMRs was intergenic and only one was located on
chromosome 21 (RUNX1). Finally, a machine learning analysis
to predict the binary diagnosis class of all 86 samples with the
minimal 22 DMRs as predictors performed with an accuracy of
100% and kappa of 1.

Hypermethylated DS DMRs are enriched across
multiple tissues while hypomethylated DS DMRs
are enriched for blood-specific regions and
chromatin states

In order to determine if the DS DMRs we identified in newborn
blood are similar to those found in other DS tissues and studies,
we performed enrichment analyses separately for hyper- and
hypo-methylated DS DMRs for each comparison group (Fig. 4A
and Supplementary Material, Table S3). DS hyper- or hypo-
methylated CpGs or DMRs were identified from 14 datasets
from 9 different studies: 1) Neonatal whole-blood CpGs assayed
by Illumina’s Infinium Human Methylation 450 K BeadChip
array (450 K) from Henneman et al. (10), 2) whole-blood CpGs
within DMRs assayed by the 450 K from Bacalini et al. (14), 3)
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Figure 3. Consensus DMR profiles. (A) Area-proportional Venn diagram of sequence overlaps for DMRs from all comparisons used to assemble the consensus DMRs. (B)

Principal component analysis of consensus DMRs. Ellipses represent the 68% confidence interval, which is 1 standard deviation from the mean for a normal distribution.

(C) Hierarchal clustering heatmap of the machine learning feature selection analysis of the consensus DMRs.

Myocardium (heart muscle) CpGs assayed on the 450 K from
Cejas et al. (15), 4) sorted adult peripheral T-lymphocytes (CD3+),
adult frontal cortex, sorted adult frontal cortex neurons (NeuN+),
sorted adult frontal cortex glia (NeuN−), adult cerebellar folial
cortex, and mid-gestation fetal cerebrum CpGs assayed by 450 K
from Mendioroz et al. (9), 5) buccal epithelium CpGs assayed by
450 K from Jones et al. (16), 6) placenta DMRs assayed by reduced
representation bisulfite sequencing from Jin et al. (5), 7) neural
induced pluripotent stem cell (iPSC) derivative CpGs assayed by
450 K from Laan et al. (17), 8) fetal frontal cortex CpGs assayed
by 450 K from El Hajj et al. (6), and 9) adult frontal cortex DMRs
assayed by WGBS from Laufer et al. (7).

As expected, the strongest overall significant (q < 0.05)
enrichments for the DS NDBS DMRs were within differentially
methylated sites from previous DS blood studies, where whole
blood, sorted adult peripheral T-lymphocytes (CD3+), and
neonatal blood were the top ranked. However, in tissues other
than blood, the hyper- and hypo-methylated DMRs displayed

divergent enrichment profiles with sites from previous DS
studies. The DS NDBS hypermethylated DMRs were significantly
(q < 0.05) enriched for multiple tissues and studies. Additionally,
12 out of the 25 previously known DS pan- and multi-tissue
genes were present in our hypermethylated NDBS DMRs,
including RUNX1, the clustered protocadherins, the HOXA
cluster, LRRC24, GLI4, TEX14, RYR1, CYTH2, ZNF837, MZF1, CPT1B,
and CELSR3 (4). In contrast to our hypermethylated DS NDBS
DMRs, our hypomethylated DS NDBS DMRs showed significant
(q < 0.05) de-enrichments in DS differentially methylated sites
from non-blood tissues. These results indicate an interesting
divergence between hypermethylated regions in DS, which are
observed across tissue-type, and hypomethylated regions in DS,
which are blood-specific.

To gain further insight into the tissue patterns of DS methy-
lation changes, we performed functional annotation of DMRs
using chromatin state segmentations from the chromHMM
core 15-state model (based on 5 histone post-translational
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Figure 4. Divergent DNA hyper- and hypo-methylation profiles. (A) DS cross-tissue enrichments for differential sites from existing DS studies. (B) Summary heatmap

of top q-values for Roadmap epigenomics 127 reference epigenomes chromHMM chromatin state enrichments for all comparisons within the blood and brain tissue

reference datasets. ∗q < 0.05.

modifications from 127 reference epigenomes) (Fig. 4B) (18,19).
DS hypermethylated DMRs showed significant enrichments
(q < 0.05) across numerous chromatin states, where the
strongest enrichments were for repressed polycomb, active
transcription start sites (TSS), and bivalent chromatin states.
Unlike the hypermethylated DMRs, the hypomethylated DMRs
were enriched in a more tissue-specific manner for chromatin
states known to vary by tissue type, particularly enhancers in
hematopoietic stem cells.

Further investigation of the 5-core histone post-translational
modifications from the 127 reference epigenomes also revealed
divergence of the hyper- and hypo-methylated DMRs (19).

Although the top enrichment for the hypermethylated DMRs
is from the heterochromatin associated mark H3K9me3 in
the thymus (Supplementary Material, Fig. S6A), which is
where T-lymphocytes mature, the hypomethylated DS DMRs
in NDBS showed a prominent enrichment for the enhancer
associated mark H3K4me1 across blood, and H3K36me3,
a mark associated with actively transcribed gene bodies,
across multiple cell types (Supplementary Material, Fig. S6B).
Together, these results demonstrate a divergence between the
hypermethylated DS DMRs, which contain a cross-tissue sig-
nature, and the hypomethylated DS DMRs, which are primarily
tissue-specific.
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Early life RUNX1 dysregulation and hypermethylation
is reflected in hypomethylated DS DMRs

In order to identify larger genomic ‘blocks’ of differential methy-
lation in DS, a separate analysis with smoothing parameters
optimized to detect regions >5 kb was performed. The DS ver-
sus TD analysis identified 3 significant (q < 0.05) blocks from 4
background blocks (Supplementary Material, Table S4A) and the
DS versus DD analysis identified 2 significant (q ≤ 0.05) blocks
from 3 background blocks (Supplementary Material, Table S4B).
Two of the previously known pan- and multi-tissue hyperme-
thylated DS DMRs also overlapped within the only significant
(q ≤ 0.05) blocks in common between the DS versus TD and DS
versus DD comparisons, while no blocks were detected in DD
versus TD. These two blocks were located in RUNX1 (Fig. 5A) and
the clustered protocadherins. Overall, RUNX1 was the highest
ranked block and among the top two highest ranked DMRs in
the DS comparisons.

An enrichment analysis of transcription factor binding motifs
was performed for NDBS DMRs across comparison groups.
This analysis identified the Runt motif family as the most
significantly (q < 0.05) enriched overall, and enrichment for
this motif was specific to hypomethylated DS DMRs (Fig. 5B).
The top Runt motif identified belonged to RUNX1 and was
from a chromatin immunoprecipitation sequencing (ChIP-seq)
experiment that assayed Jurkat cells, which are an immortalized
human T-lymphocyte cell line (Fig. 5C) (20). A genome-wide
analysis, which was not restricted to the DMRs, revealed that
diagnosis had a significant (P < 0.05, two-way ANOVA) effect on
the mean of the smoothed DNA methylation levels within the
RUNX1 ChIP-seq peaks. The DS samples had a mean of 51.4%
methylation, which was significantly (Padjusted < 0.05, post-hoc
Tukey HSD tests) lower than the 52.4% methylation of both DD
and TD. Taken together, these results indicate that large-scale
hypermethylation of RUNX1 (∼28 kb) is the strongest signal
within the DS DMRs, while its binding sites are specifically
associated with the hypomethylated DMR profile as the top
transcription factor motif.

DS patients with CHD display a distinct DMR profile

Among the DS cases in our study, there were 11 with CHD (5
Males, 6 Females) and 10 without CHD (8 males, 2 females). In
order to identify DMRs that distinguished DS with CHD from
DS without CHD, a comparison with an adjustment for sex
was performed. There were 1588 nominally significant (p < 0.05)
DMRs (35% hypermethylated, 65% hypomethylated) from 50 330
background regions that were assembled from the 22 372 366
CpGs covered in these groups (Supplementary Material, Table
S5). The DMRs distinguished DS with CHD from DS without
CHD (Supplementary Material, Fig. S7A). Notably, there was an
880 bp hypomethylated DMR that mapped to RUNX1 in CHD
compared to non-CHD DS cases. The only other CHD DMRs that
mapped to the known DS pan- and multi-tissue genes were
VPS37B and the HOXA cluster locus, both of which were also
hypomethylated, as well as the clustered protocadherin locus,
where DMRs distinguishing CHD DS cases were observed in
both directions. GO enrichment analyses of the DS CHD distin-
guishing DMRs revealed significant (P < 0.05, dispensability ≤
0.03) enrichments for terms related to the heart (atrial cardiac
muscle tissue development and actin-based cell projection) as
well as similar terms to the previous DS versus TD and DS versus
DD comparisons, specifically those related to neurodevelopment
and metabolism (Supplementary Material, Fig. S7B). Machine

learning feature selection was performed on the DS CHD DMRs
and identified a minimal set of 7 DMRs that distinguished DS
with CHD from DS without CHD (Supplementary Material, Fig.
S7C). Additionally, a final machine learning analysis to predict
the diagnosis class of all 21 samples with the 7 minimal DMRs
as predictors performed with an accuracy of 100% and kappa of
1. The top overall significant (q < 0.05) transcription factor motif
enrichment for the DS CHD DMRs was for the homeobox tran-
scription factor BAPX1, which was specific to the hypomethy-
lated DMRs (Supplementary Material, Fig. S7D) (21). Notably, an
ETS:RUNX motif, which refers to regions co-occupied by the two
factors, was enriched within the hypermethylated DS CHD DMRs
and also within the hypomethylated DS DMRs from the previous
comparisons (22).

Discussion
Overall, the results of the first WGBS analysis of NDBS DNA
samples demonstrate that the DS NDBS methylome is character-
ized by a genome-wide profile consisting of thousands of DMRs
that distinguish it from not only TD but also, for the first time,
idiopathic DD. The DS DMRs mapped to genes that are enriched
for processes related to neurodevelopment, metabolism, and
transcriptional regulation. Furthermore, the hyper- and hypo-
methylated DMRs distinguishing DS from DD or TD showed
divergent profiles, where the hypermethylated DMRs contained
a cross-tissue signature and the hypomethylated DMRs reflected
a blood-specific profile related to RUNX1 downstream targets.

One limitation of our study was that neonatal whole-blood is
a heterogenous mixture of different cell types, which includes
nucleated red blood cells, and alterations in cell composition
could influence some of the observed differences. Since our
study was, to our knowledge, the first WGBS of NDBS, we uti-
lized multiple existing cell composition estimation methods
and reference datasets; however, none accurately estimated the
expected cell composition or alterations. Therefore, it was not
yet possible to correct for cell type composition due to a lack
of a combination of appropriate neonatal whole-blood reference
datasets and low-pass WGBS cell composition estimation meth-
ods. It is our hope that by demonstrating the feasibility of this
assay of a low input sample source for epigenome-wide associa-
tion studies (EWAS) that future research will generate specific
neonatal whole-blood reference datasets and low-pass WGBS
cell-type composition estimation methods. However, we note
that our analyses replicate many known DS specific differences
that have been observed in analyses of bulk tissues (whole-
blood) (14) with cell-type composition correction and purified
cell types (T-lymphocytes) (9), which both showed the strongest
enrichments within our DS discriminating DMRs, a result that
would not be expected if cell type shifts had a large effect on our
analyses.

Notably, the GO analyses are consistent with the literature
and replicate known differences in prior DS metabolome and
methylome studies. Previous analyses of plasma metabolites
at childhood from DS patients in the CHARGE study revealed
distinct alterations to methylation metabolism, specifically
choline, which are consistent with our enrichment for DS
differentially methylated genes involved in choline metabolism
and pyridoxal phosphate (the active form of vitamin B6) binding
(23). Additionally, our findings replicate those of DS differentially
methylated genes from whole-blood, which were involved in
processes related to hematopoiesis, neurodevelopment, and
chromatin (14). Finally, the GO terms identified from DMRs
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Figure 5. RUNX1 profile. (A) Significant (q < 0.05) hypermethylation within the RUNX1 block. The lines represent individual smoothed methylation level estimates

for DS (red), DD (green) or TD (blue). The dots represent the methylation level estimates of an individual CpG, and the size of each dot is representative of coverage.

CpG and genic annotation tracks are shown below each plot, and the RUNX1 gene is encoded on the negative strand. (B) Summary heatmap of top P-values for top

10 transcription factor motif family enrichments for all comparison groups (∗q < 0.05). (C) Mean percent smoothed DNA methylation levels in RUNX1 binding sites

alongside the motif (∗Padjusted < 0.05).

discriminating DS cases with CHD reflect not only heart develop-
ment, but also neurodevelopmental functions, consistent with
the observation that DS infants with CHD are known to show an
increased severity of neurodevelopmental disabilities (24,25).

RUNX1 is a strong candidate for being a primary dysregulated
driver of the epigenetic changes in DS blood. The hyperme-
thylation of RUNX1 is reproducible across multiple blood stud-
ies (9,10,14). In our study, hypermethylation of RUNX1 was the
strongest DS signal and it was one of the 22 machine learning
predictors of DS in NDBS, where it distinguished DS from not
only TD but also idiopathic DD. RUNX1 was also the top over-
all transcription factor motif, specifically enriched within the
hypomethylated DS DMRs but not the hypermethylated DMRs.
The enrichment for RUNX1 binding motifs in hypomethylated
sites has been previously reported in DS T-lymphocytes (4,9).

Mechanistically, RUNX1 binding results in demethylation of the
bound region during hematopoietic development through the
recruitment of DNA demethylation enzymes (TET2, TET3, TDG,
and GADD45) (26). Since RUNX1 is located on chromosome 21,
it is overexpressed in DS (4). Taken together, these observa-
tions suggest that the tissue-specific hypomethylated DMRs we
observed in DS NDBS are downstream of a primary alteration
to RUNX1, where they may have been demethylated by excess
RUNX1 binding. This mechanism may also contribute to the
observed trend of genome-wide hypomethylation, which has
also been previously reported in DS T-lymphocytes (9). Notably,
the block of hypermethylation overlaps with an enhancer in
the first intron of RUNX1, which regulates RUNX1 expression
in hematopoietic stem cells and is also part of a larger super-
enhancer involved in hematopoiesis (27–29).
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Figure 6. Putative RUNX1 mechanism. During early development the increased dosage of RUNX1 results in genome-wide hypomethylation of its binding sites through

recruitment of the TET2 demethylase. Then, during later development and apparent at birth, the RUNX1 enhancer becomes hypermethylated by DNMT3A and DNMT3L

to attenuate the increased dosage. White lollipops represent unmethylated CpG sites and black lollipops represent methylated CpG sites.

Our findings are consistent with a two-stage mechanism to
explain the complex RUNX1 DNA methylation profile (Fig. 6). Ini-
tially, during early prenatal development, the increased dosage
of RUNX1 may result in genome-wide hypomethylation of its
binding sites through recruitment of TET2. Then, during later
development and apparent at birth, the RUNX1 super-enhancer
may become hypermethylated as a compensatory response to
attenuate the overexpression of RUNX1. This hypermethyla-
tion may be driven by the catalytically inactive but stimulatory
DNA methyltransferase DNMT3L, which is also located on chro-
mosome 21 and known to methylate key DS genes (30). Ulti-
mately, the observed alterations in RUNX1 could influence blood
cell function and/or composition as well as neurodevelopment
(11,12). Finally, RUNX1 methylation could also reflect the severity
of secondary clinical features, as a smaller region within RUNX1
was hypomethylated in DS cases with CHD compared to those
without.

Taken together, our findings represent one of the largest
sample sizes for a DS methylome study, define a DMR profile that
distinguishes DS not only from TD but also from idiopathic DD,
and provide a novel and general framework for the design and
analysis of low-pass WGBS to detect genome-wide methylation
changes in NDBS that can be applied to other genetic disorders
and environmental exposures.

Materials and Methods
Cohort and DNA extraction from NDBS

Study protocols were approved by the Institutional Review Board
at the University of California, Davis (IRB #226028 and #952089)
and the Committee for the Protection of Human Subjects at the
State of California’s Health and Human Services Agency (Feder-
alwide Assurance #00000681, Project #2018-088). Formal written
informed consent from parents or guardians of the participants

was obtained prior to collection of any data or specimens. The
uploading of the raw or processed sequencing data derived
from NDBS of individuals to an external bank or repository was
prohibited, as the NDBS were property of the Genetic Diseases
Screening Program and subject to restrictions in accordance with
California Health and Safety Code, Sections 124980 (j), 124991 (b),
(g), (h) and 103850 (a) and (d).

The California Department of Developmental Services’
Regional Center database was used to identify research subjects
from the three groups (DS, DD, and TD) within the CHARGE
study. The CHARGE participants were matched to the California
Newborn Dried Bloodspot Registry, which archives NDBS, also
known as Guthrie cards, from heel pricks of newborns obtained
24–72 h after birth. DNA was extracted from 86 NDBS using
protocol GQ, which was established for DNA methylation array
profiling of NDBS (31). This protocol utilized the GenSolve
DNA COMPLETE (GSC-100A, GenTegra) and QIAamp DNA Micro
(Qiagen, 56 304) kits and was modified to follow the updated
manufacturer’s instructions. DNA quality and quantity were
assessed via spectrophotometry on a Nanodrop instrument and
fluorometry on a Qubit instrument.

Low-pass WGBS

All DNA samples were sonicated to ∼350 bp on a Covaris E220
with a peak power of 175, a duty factor of 10, a cycle/burst
of 200 and a time of 47 s. A 1.8× SPRI size selection was per-
formed after sonication. Sonication traces were assessed using
a Caliper LabChip GX Analyzer. Approximately 10 ng of the
sonicated and size selected DNA was bisulfite converted using
the EZ DNA Methylation-Lightning Kit (Zymo Research, D5031)
according to the manufacturer’s instructions. Bisulfite converted
DNA was eluted into Low EDTA TE (Swift Biosciences, 90 296).
Libraries were prepared by post-bisulfite adapter tagging with
terminal deoxyribonucleotidyl transferase-assisted adenylate
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connector-mediated single-stranded-DNA ligation using the
Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, 30 096)
with the Methyl-Seq Combinatorial Dual Indexing Kit (Swift
Biosciences, 38 096) according to the manufacturer’s instructions
with 12 cycles of indexing PCR (32,33). Library traces were
assessed using a Caliper LabChip GX Analyzer. The libraries were
quantified by fluorometry on a Qubit instrument and pooled
in equimolar ratios. The library pool was sequenced across 1
Illumina NovaSeq 6000 S4 flow cell (4 lanes) for 150 bp paired
end reads to generate ∼100 million read-pairs (∼5× coverage) of
the genome per sample.

Sequencing alignment

Raw sequencing reads were demultiplexed and sample specific
FASTQ files were merged across lanes. The FASTQ files were then
aligned to the human genome (hg38) using CpG_Me (https://
github.com/ben-laufer/CpG_Me) with the default parameters.
The pipeline consisted of trimming adapters and methylation
bias, screening for contaminating genomes, aligning to the ref-
erence genome, removing PCR duplicates, calculating coverage,
calculating insert size, extracting CpG methylation, generating
a genome-wide cytosine report (CpG count matrix), as well as
examining quality control metrics (34–36).

CNV calling algorithm

A novel read depth based CNV calling algorithm (https://github.
com/hyeyeon-hwang/CNV_Me) was utilized to detect large-scale
structural variation among the DS, DD, and TD samples. The
coverage of 5 kb bins in the chromosomes of each sample was
calculated by dividing the sum of the number of reads times the
read lengths in each bin by the bin size of 5 kb. Each bin coverage
was then normalized by dividing the sum of the number of reads
times read lengths in each bin. To calculate the copy number, the
normalized bin coverage value was divided by a normalization
factor. To anchor the normal copy number value of autosomal
chromosomes to be 2, the normalization factor of autosomes
was calculated by multiplying 0.5 by the sum of the normalized
bin coverage of all the TD control samples and dividing by
the total number of control samples. The normalization factors
of the sex chromosomes were calculated similarly, except the
normal copy number of the sex chromosomes was anchored to
1 for male samples. The sex of each sample was verified using
k-means clustering on the ratios of the number of reads aligned
to the sex chromosomes.

DMR and block analyses

DMR and block calling as well as some of the downstream
enrichment analyses were performed using DMRichR (https://
github.com/ben-laufer/DMRichR). To find DMRs that consisted
of at least 5 CpGs with at least a 5% difference, the default
parameters were used, aside from directly adjusting for sex to
remove sex-specific effects, setting perGroup to 0.75 to ensure
that a CpG is covered in 75% of samples in each group, and set-
ting the block permutations to 50. DMRichR utilizes the dmrseq
(37) and bsseq (38) algorithms to infer methylation levels from
CpG count matrices and identify DMRs. These algorithms utilize
smoothing and weighting based approaches to infer DMRs from
low-pass WGBS, where CpGs with higher coverage are given
higher weight. Therefore, the statistical approaches benefit from
additional biological replicates more so than deeper sequencing.
DMRichR utilizes the dmrseq algorithm to identify DMRs (a few

hundred bp to several kb) as well as blocks (>5 kb), where the
coverage filtering settings exceeded the established minimum
requirements (37). The dmrseq algorithm first assembles can-
didate background regions, which show a difference between
groups, and then performs a statistical analysis to estimate a
region statistic. Finally, permutation testing of the pooled null
distribution is utilized to identify significant DMRs by calculating
empirical P-values that are then FDR corrected (q-values). Indi-
vidual smoothed methylation levels for downstream analyses
and data visualization were obtained using bsseq (38).

Machine learning

Random forest and support vector machine algorithms within
the Boruta (39) and sigFeature (40) packages, respectively, were
used to build binary classification models and generate two lists
of the DMRs ranked by variable importance for the feature selec-
tion analyses. From the two lists, the common DMRs within the
top 1% of each were selected as minimal DMRs. The follow-up
machine learning analyses to predict the class of diagnosis from
the minimal DMRs identified in the feature selection analyses
utilized the random forest algorithm and 5-fold cross validation.
The ntree (number of trees) and mtry (number of predictors
sampled at each tree split) model parameters were 500 and 2,
respectively.

Enrichment testing

GO enrichment testing was performed using a customized ver-
sion of GOfuncR, which was based on genomic coordinates
and relative to background regions with regions being anno-
tated to a gene if they were between 5 kb upstream to 1 kb
downstream of the gene body (41,42). The identified significant
(Punadjusted < 0.05) GO terms were then slimmed using REVIGO and
ranked by dispensability (43). The hypergeometric optimization
of motif enrichment (HOMER) toolset was utilized to test for
enriched transcription factor motifs in DMRs relative to back-
ground regions through the findMotifsGenome.pl script, where
the region size was set to size given and the normalization
was set to CpG content (44). The genomic association tester
(GAT) was utilized to test for sequence specific overlap rela-
tive to background regions with GC content correction for the
pan- and multi-tissue enrichment testing (45). A total of 10 000
random samplings were used for all GAT analyses. Previous DS
datasets were obtained from their respective publications. The
locus overlap analysis (LOLA) (46) program was also utilized for
DMR enrichment testing, relative to background regions, for the
reference epigenome histone post-translational modifications (5
marks, 127 epigenomes) and the related chromHMM chromatin
states from the core 15-state model (18,19). The scripts to repro-
duce the main figures and analyses are available online (https://
github.com/ben-laufer/Low-Pass-WGBS-of-DS-NDBS).

Supplementary Material
Supplementary Material is available at HMG online.
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